Forecasting New Customers' Behaviour by Means of a Fuzzy Unsupervised Method

نویسندگان

  • Germán Sánchez
  • Juan Carlos Aguado
  • Núria Agell
چکیده

The use of unsupervised fuzzy learning classifications techniques allows defining innovative classifications to be applied on marketing customer’s segmentation. Segmenting the clients’ portfolio in this way is important for decision-making in marketing because it allows the discovery of hidden profiles which would not be detected with other methods. Different strategies can be established for each defined segment. In this paper a case study is conducted to show the value of unsupervised fuzzy learning methods in marketing segmentation, obtaining fuzzy segmentations via the LAMDA algorithm. The use of an external decision variable related to the loyalty of the current customers will provide useful criteria to forecast potentially valuable new customers. The use of the introduced methodology should provide firms with a significant competitive edge, enabling them to design and adapt their strategies to customers’ behaviour.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

Oil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)

Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

Forecasting customer’s behaviour in the Spanish grocery industry: Identifying the customers who are going to buy online

The experiment presented in this paper has used an unsupervised learning technique to forecast online purchasing based on historic in-store data. The methodology is an innovative software tool called LAMDA (Aguilar-Martin and López de Mántaras, 1982; Aguilar-Martin and Piera, 1986; Aguado, 1998) based on the fuzzy concept of adequacy (Aguado, 1998; Casabayó et al., 2004). Assumed the fact that ...

متن کامل

A new hybrid method based on fuzzy Shannon’s Entropy and fuzzy COPRAS for CRM performance evaluation (Case: Mellat Bank)

Customer relationship management is a multiple perspective business paradigm which helps companies gaining competitive advantage through relationships with their customers. An integrated framework for evaluating CRM performance is an important issue which is not addressed completely in previous studies. The main purpose and the most important contribution of this study is introducing a framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007